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Summary: Efficient drone path planning is critical for optimizing the performance of unmanned aerial systems, particularly 

in applications requiring extensive coverage and precision. This study explores the impact of strategic launch pad positioning 

on drone path planning, emphasizing its role in minimizing energy consumption and improving operational efficiency. 

Utilizing the multiple Traveling Salesman Problem (mTSP) algorithm, the research investigates how repositioning the launch 

pad can influence the assignment and configuration of drone routes. Results demonstrate that optimizing the launch pad 

location significantly reduces redundant travel distances, and enhances overall mission performance. This approach 

underscores the importance of adaptive deployment strategies in the design of efficient, energy-aware drone systems. 
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1. Introduction 
 

Path planning in drones is an essential aspect in 

unmanned aerial vehicle (UAV) operations, ensuring 

that the drone flies efficiently while meeting the 

mission requirements. Applications range from 

disaster relief and agricultural monitoring to logistics 

and surveillance, where effective path planning 

directly contributes to operational success by 

optimizing resource utilization, such as battery life and 

time [1]. 

 

As drone technology advances, path planning has 

become an interdisciplinary research area by 

incorporating robotics, artificial intelligence (AI), 

mathematics, and GIS [2, 3]. Nonetheless, the main 

focus still remains on calculating the best routes from 

start to destination, taking into account mission-

specific factors. From delivery of medical supplies to 

disaster-stricken areas to real-time crop monitoring, 

path planning is key to improving efficiency and 

reducing costs in UAV operations. 

 

1.1. Motivation & Contribution 

 

The rapid growth of drone applications presents 

both opportunities and challenges in the realm of path 

planning. Modern applications demand innovative 

solutions that can handle increasing operational 

complexities, such as multi-drone coordination, real-

time environmental adaptability, and energy 

efficiency. These challenges underscore the need for 

robust path-planning algorithms that not only optimize 

routes but also account for constraints like terrain, 

weather, and communication reliability. 

 

One critical motivator for path-planning 

optimization is energy efficiency. Drones have limited 

battery capacity, which directly affects their 

operational range. Path-planning algorithms that 

minimize travel distance and energy consumption can 

significantly extend mission durations and expand the 

scope of applications. This article contributes to this 

ongoing effort by consolidating the latest findings and 

methodologies in drone path planning optimization. 

More specifically, the key contributions of this work 

can be summarized as follows: 

 

• Presents the significant role of strategic launch 

pad positioning in enhancing the efficiency of 

drone path planning. 

• Introduces a timely solution for identifying a 

near-optimal launch pad for a flight plan. 

• Enhances the framework presented in [1] with 

the addition of two algorithms that aid in the 

prediction of the optimal launch pad. 

 

The structure of the paper is as follows: Section 2 

reviews relevant literature on drone path planning. 

Section 3 introduces the proposed framework, while 

Section 4 outlines the experimental setup, presents the 

results, and provides an evaluation of the findings. The 

paper concludes in Section 5. 

 

2. Background and related work 
 

Recent research on drone path planning has 

focused on various innovative methodologies to 

enhance the operational efficiency of UAVs in 

complex and dynamic environments. As the 

operational landscape of drones becomes increasingly 

intricate, researchers have developed a range of 

strategies to address the challenges associated with 

path planning, including obstacle avoidance, energy 

efficiency, and environmental adaptability. 
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One significant area of advancement is the 

development of algorithms that optimize path planning 

under various constraints. Fan et al. [4] introduce a 

path planning method that uses Dubins paths to ensure 

smooth turns making sure to avoid restricted areas and 

directional constraints, thus improving mission 

efficiency for flight plans with long distances. 

Similarly, Xiong et al. [5] introduce a hybrid approach 

combining Improved Symbiotic Organisms Search 

(ISOS) with Sine-Cosine Particle Swarm Optimization 

(SCPSO) methods, enhancing the precision and 

stability of path planning in three-dimensional 

environments. These methods highlight the 

importance of adapting path planning algorithms to the 

specific operational contexts of drones. 

 

Moreover, the integration of advanced 

technologies such as the Internet of Drones (IoD) [6] 

has been explored to optimize UAV path planning 

further. Shirabayashi [7] discusses the implications of 

IoD on path planning strategies, emphasizing the need 

for mathematical models that can accommodate the 

complexities introduced by interconnected drone 

networks. This integration not only facilitates better 

communication among drones but also enhances their 

ability to navigate dynamically changing 

environments. 

The consideration of environmental factors is also 

critical in recent studies. Jones et al. [8] provide a 

comprehensive survey on the impact of environmental 

complexity on UAV path planning, identifying key 

challenges and proposing future research directions. 

The survey therein underscores the necessity for path-

planning algorithms that can adapt to real-time 

changes in the environment, ensuring safe and efficient 

drone operations.  

 

The application of swarm intelligence techniques 

has emerged as a promising avenue for enhancing 

drone path planning. For example, Wu et al. [9] 

propose a swarm-based 4D path planning method 

tailored for urban environments,  

 

which addresses the complexities associated with 

multiple drones operating simultaneously. This 

approach not only improves flight safety but also 

optimizes the overall efficiency of drone operations in 

densely populated areas. 

 

In addition, energy efficiency remains a pivotal 

concern in drone path planning. Diller's [10] research 

emphasizes the trade-off between speed and energy 

consumption, advocating for path-planning 

approaches that account for energy constraints while 

maximizing operational speed. This focus on energy-

aware planning is crucial for extending the operational 

range of drones, particularly in applications such as 

surveillance and agricultural monitoring.  

 

In the same area, Gasteratos and Karydis [1] 

proposed a path planning optimization technique 

whereby the starting point distances can be reduced 

leading to better energy management and operational 

efficiency. In their research show that when the launch 

pad is relocated, it minimizes the distance that drones 

must travel between the launch pad and their first 

station, as well as the distance from their last station 

back to the launch pad. This reduction directly 

translates into lower energy consumption and shorter 

flight times, enhancing the overall efficiency of the 

operation. 

 

3. Proposed method 
 

The impact of launch pad repositioning as 

described by Gasteratos and Karydis in their work [1], 

goes beyond improving the initial and final segments 

of each drone's route. The Multiple Traveling 

Salesman Problem (mTSP) [11, 12] algorithm, which 

is designed to minimize the total travel distance across 

multiple drones, calculates the optimal routes based on 

a predefined starting point, the launch pad, which is 

common to all drones. Changing the launch pad to a 

new location and running the algorithm again will 

generate entirely different route configurations. For 

instance, relocating the launch pad closer to a cluster 

of sensor stations may lead the algorithm to reassign 

some stations to different drones, resulting in shorter 

and more efficient routes overall.  

 

This flexibility in route optimization highlights a 

critical aspect of the mTSP algorithm: it continuously 

seeks to minimize the total travel distance by exploring 

alternative route structures. When the launch pad is 

repositioned, the algorithm evaluates how the new 

location affects the travel distances between the sensor 

stations and adjusts the routes accordingly, as shown 

in (Fig. 1). This process not only reduces the travel 

distance for individual drones, but also balances the 

workload among the drones more effectively, 

preventing any single drone from being overburdened 

with a disproportionately long route. This means that 

repositioning the launch pad introduces an opportunity 

for the algorithm to explore different route 

combinations that may not have been considered 

optimal under the previous configuration. 
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(a) Sensor stations in a field 

 

(b) mTSP using an arbitrary launch pad 

 

(c) mTSP using a different launch pad 

 

(d) mTSP using a different launch pad 

 

Fig. 1. Changing the launch pad position. 

 

 

 

These findings emphasize that the launch pad's 

location is not merely a logistical decision but a critical 

variable in the optimization process. Repositioning 

allows the algorithm to explore new route 

combinations, often resulting in better performance by 

minimizing redundant travel distances. This flexibility 

underscores the role of adaptive deployment strategies 

in enhancing operational efficiency for drone-based 

data collection systems. In light of these 

considerations, our research endeavors to explore 

methodologies for determining the most advantageous 

launch pad location for a specified flight plan. As far 

as we know, no existing research has addressed this 

particular challenge. 

 

3.1. Establishing the ground truth  

 

The methodology developed in this study must be 

validated against the ground truth to ensure measurable 

and reliable results. The initial step in this process is to 

establish the ground truth for the scenarios under 

consideration. This involves identifying a 

methodology that consistently identifies the optimal 

starting point for the area of interest, while temporarily 

disregarding the computational time required to 

achieve this outcome. The worst-case scenario in terms 

of time complexity is the application of the brute-force 

method, which involves evaluating every potential 

point in the area to determine the optimal starting 

point. Although this method is computationally 

expensive, it guarantees the identification of the best 

starting point. 

 

For instance, consider a scenario where sensor 

stations are distributed across a field, as illustrated in 

(Fig. 1a), with dimensions of 1496 units in length and 

571 units in width. The brute-force approach would 

require running the mTSP algorithm 1496 × 571 = 

854,216 times to evaluate each point in the 2D 

Euclidean space where the sensor stations are located. 

Despite the significant computational expense, this 

method is crucial as it ensures the determination of the 

optimal starting point, leading to the minimal total 

traveled distance when the mTSP is applied. 

 

Using equations (Eq. 2) and (Eq. 3) as defined by 

Cheikhrouhou and Khoufi in their work [12], the 

optimal starting point can be defined as the one with 

the minimum total traveled distance after applying 

mTSP in the form of: 

 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑃𝑜𝑖𝑛𝑡

= min(𝑇𝑜𝑡𝑎𝑙𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗) 

 

(1) 

 

whereby the Total Distance for x drones in a flight plan 

for a particular starting point j is defined as: 

 

𝑇𝑜𝑡𝑎𝑙𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗 = ∑ 𝐷(𝑅𝑜𝑢𝑡𝑒𝑈𝑖
)

𝑗

𝑥

𝑖=1

 
 

(2) 

 

and the Route distance D of a drone U𝑖 is defined as the 

total distance traveled by the drone, starting from its 

initial point H, visiting the assigned ground stations 

𝑆𝑖1
, 𝑆𝑖2

, … , 𝑆𝑖𝑛
 sequentially in the given order, and then 

returning to H. 
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𝐷(𝑅𝑜𝑢𝑡𝑒𝑈𝑖
)

𝑗
= 𝐷(𝐻, 𝑆𝑖1

)

+ ∑ 𝐷(𝑆𝑖𝑘
, 𝑆𝑖𝑘+1

)

𝑛−1

𝑘=1

+ 𝐷(𝑆𝑖𝑛
, 𝐻) 

 

 

 

(3) 

 

 

3.1. The implementation of GA with mTSP 

 

In this study, we address the challenge of finding 

the optimal starting point in a sensor network 

distribution, where the computational cost of using 

brute-force methods can be prohibitive. The brute-

force approach guarantees the optimal solution by 

evaluating every potential starting point, leading to a 

time complexity proportional to the number of possible 

evaluations (hundreds of thousands). While this 

method ensures accuracy, its computational expense 

grows significantly with larger problem sizes, making 

it inefficient for large-scale applications. Therefore, it 

is essential to explore alternative methods that can 

provide optimal or near-optimal solutions with 

significantly lower computational cost. 

 

A promising approach to solve this problem 

efficiently is the use of genetic algorithms (GAs). GAs 

are heuristic search methods inspired by natural 

selection and the principles of evolution, which have 

been successfully applied to a wide variety of 

combinatorial optimization problems [13, 14]. The 

central advantage of GAs is their ability to explore 

large and complex solution spaces without 

exhaustively evaluating every possible solution, 

making them computationally feasible even for 

problems with large numbers of potential solutions 

[15]. 

 

To implement this approach, we enhanced the 

mTSP modeling framework described in [1] and 

introduced two additional techniques to identify the 

optimal starting point: brute-force and GA-based 

methods. The brute-force approach was 

straightforward to implement, as it involved reusing 

existing functionality. To implement the GA, we 

mapped its key characteristics to the mTSP problem, 

detailed next, and utilized the GeneticSharp library 

[16], which makes easier the development of 

applications using genetic algorithms. 

 

A Genetic Algorithm requires several key features 

to function effectively [17]. First, it needs a method to 

represent potential solutions to the problem (the 

chromosome in GA terms). We implemented 

chromosome, in a way that encapsulates all the 

necessary information for evaluating a solution, such 

as the coordinates X and Y of the starting point. 

 

Second, a mechanism to initialize a population of 

these solutions was implemented. This population 

serves as the starting point for the evolutionary process 

and should ideally cover a diverse range of possibilities 

to ensure a broad exploration of the solution space. 

 

Another essential feature is the fitness function 

that quantifies the quality of each solution. This 

function provides a measurable way to compare 

solutions, guiding the algorithm toward better 

outcomes. This was implemented by utilizing the total 

distance calculated by mTSP. 

 

The GA also needs a method to select solutions for 

reproduction. For this, the elite selection [18] was used 

that determines which solutions are more likely to 

contribute their "genes" to the next generation, 

favoring those with higher fitness. This selection 

process helps to preserve the best solutions found so 

far and prevents the GA from losing valuable genetic 

material during the evolutionary process. 

 

To create new solutions, the algorithm relies on 

crossover and mutation operators [19]. Crossover 

combines parts of two parent solutions to produce 

offspring, facilitating the exchange of beneficial traits. 

Uniform crossover was used in this implementation 

that utilizes a fixed mixing ratio between two parents. 

Similarly, mutation introduces small random changes 

to individual solutions, helping the algorithm explore 

new areas of the solution space and maintain diversity. 

For this, the uniform mutation was used that replaces 

the value of the chosen gene with a uniform random 

value. 

 

Finally, the algorithm requires a termination 

condition to decide when to stop the evolutionary 

process. As such, a simple yet effective termination 

condition was used to generate initial results that 

requires further investigation in future works. That is, 

the algorithm stops after an absolute threshold of one 

hundred generations. 

 

4. Experimental evaluation 
 

4.1. The Setup 

 

As mentioned in the previous section the mTSP 

modeling framework in [1] was enhanced to include 

the brute-force and GA-based methods using the .NET 

framework with C#. The hardware specifications used 

for the tests were as follows: 512 GB of memory, an 

AMD® Ryzen Threadripper Pro 5955WX processor 

with 16 cores and 32 threads, operating at 4.0 GHz, and 

four NVIDIA GA102GL [RTX A5000] graphics 

cards.  

 

To facilitate a more straightforward comparison 

between brute-force and GA, points outside the 

bounding box encompassing all sensor stations were 

excluded as these points contribute to increased total 

traveled distances rather than reduced. 

 

A total of 80 representative flight plans, each 

corresponding to a unique scenario, were developed. 
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These scenarios varied in the number of stations, 

which were set at 5, 10, 15, 20, 25, 45, 60, or 100, and 

incorporated between 1 and 10 drones. Each flight plan 

was repeated nine additional times, for a total of 10 

iterations per scenario, to account for the stochastic 

nature of the random station locations. Consequently, 

the study included a total of 80 scenarios x 10 iterations 

= 800 tests. 

 

 

4.2. The Results 

 

A total of 800 tests were conducted, each executed 

twice: once using brute-force and once using the GA. 

For each test, measurements were recorded for both the 

brute-force and GA approaches, specifically focusing 

on the total distance traveled and the time required to 

identify the optimal starting point.  

In order to test the effectiveness and efficiency of 

the proposed methodology, this work utilizes the 

following two metrics: the Performance degree (Eq. 4) 

of the GA approach in relation to the ground truth 

provided by the brute-force method, and the TimeRatio 

(Eq. 5) of the GA approach in relation to the ground 

truth provided by the brute-force method. Accordingly, 

TimeRatio values close to 0 indicate the superiority of 

the GA approach, values close to 1 indicate the 

equivalence of the GA and brute-force approaches, 

while values greater than 1 show the superiority of the 

brute-force approach over the GA. 

 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 1 − (1 −
Brute Force Distance

GA Distance
) (4) 

 

𝑇𝑖𝑚𝑒𝑅𝑎𝑡𝑖𝑜 =
Genetic Algorithm Time

Brute Force Time
 (5) 

 

Based on the results obtained, as shown in (Fig. 2) 

and (Fig. 3), the GA achieves accuracy comparable to 

brute-force while requiring significantly less 

computational time. The X-axis for both graphs shows 

how many ground sensor stations are used in each 

scenario. 

 

More specifically in (Fig. 2) we see that the total 

traveled distance generated when GA is used to predict 

a starting point is a near match of that of the brute-force 

ranging from 100% to 97%. 

 

 

Fig. 2. The extent to which the GA approximated the brute-

force’s results. 

 

 

Additionally, as shown in (Fig. 3), the 

computational cost of the Genetic Algorithm is 

significantly lower than that of the brute-force method, 

with TimeRatio of GA over brute-force methods being 

in the range of [0.00004490, 0.00021891] indicating 

thus the clear superiority of the GA approach, as 

previously discussed. 

 

 
Fig. 3: Time ratio indicating GA’s speed advantage over 

brute-force 
 

 

In a qualitative approach of the evaluation of our 

experimentation we have to note that while the brute-

force method guarantees the exact optimal solution, its 

computational cost becomes prohibitive for large-scale 

problems. In contrast, the Genetic Algorithm: 

 

• Provides a near-optimal solution with 

accuracy levels exceeding 97%. 

• Drastically reduces computation time, 

achieving results up to 4 orders of magnitude 

faster than the brute-force. 

 

This balance of accuracy and efficiency makes the GA 

an ideal choice for large-scale sensor network 

optimization problems, where real-time or near-real-

time decision-making is crucial.  

A quick view of the findings is summarized in 

Table 1. 

 

 
Table 1. Summary of Findings 

 

Metric Brute-Force 
Genetic 

Algorithm 

Advantage 

(GA) 

Accuracy 

(Distance) 

Exact 

solution  
97% to 100% 

Near-

optimal 

Computation 

Time 

Prohibitively 

High 

Significantly 

lower 

4 orders of 

magnitude 
faster 

 

 

5. Conclusions 
 

Drone path planning constitutes a critical function 

within the domain of UAV operations, facilitating 

efficient navigation while simultaneously satisfying 

mission-specific objectives. Given the diverse 
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applications of UAVs, path planning exerts a 

significant influence on operational efficacy. This is 

achieved through the optimization of flight distance, 

consequently minimizing resource consumption, 

including battery life and operational time. 

 

This study has demonstrated the significant role of 

strategic launch pad positioning in enhancing the 

efficiency of drone path planning. By utilizing the 

mTSP algorithm, we show that repositioning the 

launch pad can lead to substantial reductions in 

redundant travel distances, ultimately improving 

overall mission performance. These findings 

underscore the critical importance of adaptive 

deployment strategies in the design of energy-aware 

drone systems.  

 

Future research will focus on fine-tuning the 

internal parameters of the Genetic Algorithm to 

enhance its performance. Additionally, exploring 

alternative methods for predicting the optimal starting 

point will be pursued to further improve the overall 

results. 
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