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Summary: Efficient drone path planning is critical for optimizing the performance of unmanned aerial systems, particularly
in applications requiring extensive coverage and precision. This study explores the impact of strategic launch pad positioning
on drone path planning, emphasizing its role in minimizing energy consumption and improving operational efficiency.
Utilizing the multiple Traveling Salesman Problem (mTSP) algorithm, the research investigates how repositioning the launch
pad can influence the assignment and configuration of drone routes. Results demonstrate that optimizing the launch pad
location significantly reduces redundant travel distances, and enhances overall mission performance. This approach
underscores the importance of adaptive deployment strategies in the design of efficient, energy-aware drone systems.
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1. Introduction

Path planning in drones is an essential aspect in
unmanned aerial vehicle (UAV) operations, ensuring
that the drone flies efficiently while meeting the
mission requirements. Applications range from
disaster relief and agricultural monitoring to logistics
and surveillance, where effective path planning
directly contributes to operational success by
optimizing resource utilization, such as battery life and
time [1].

As drone technology advances, path planning has
become an interdisciplinary research area by
incorporating robotics, artificial intelligence (Al),
mathematics, and GIS [2, 3]. Nonetheless, the main
focus still remains on calculating the best routes from
start to destination, taking into account mission-
specific factors. From delivery of medical supplies to
disaster-stricken areas to real-time crop monitoring,
path planning is key to improving efficiency and
reducing costs in UAV operations.

1.1. Motivation & Contribution

The rapid growth of drone applications presents
both opportunities and challenges in the realm of path
planning. Modern applications demand innovative
solutions that can handle increasing operational
complexities, such as multi-drone coordination, real-
time environmental adaptability, and energy
efficiency. These challenges underscore the need for
robust path-planning algorithms that not only optimize
routes but also account for constraints like terrain,
weather, and communication reliability.

One critical motivator for path-planning
optimization is energy efficiency. Drones have limited

battery capacity, which directly affects their
operational range. Path-planning algorithms that
minimize travel distance and energy consumption can
significantly extend mission durations and expand the
scope of applications. This article contributes to this
ongoing effort by consolidating the latest findings and
methodologies in drone path planning optimization.
More specifically, the key contributions of this work
can be summarized as follows:

e  Presents the significant role of strategic launch
pad positioning in enhancing the efficiency of
drone path planning.

e Introduces a timely solution for identifying a
near-optimal launch pad for a flight plan.

e Enhances the framework presented in [1] with
the addition of two algorithms that aid in the
prediction of the optimal launch pad.

The structure of the paper is as follows: Section 2
reviews relevant literature on drone path planning.
Section 3 introduces the proposed framework, while
Section 4 outlines the experimental setup, presents the
results, and provides an evaluation of the findings. The
paper concludes in Section 5.

2. Background and related work

Recent research on drone path planning has
focused on various innovative methodologies to
enhance the operational efficiency of UAVs in
complex and dynamic environments. As the
operational landscape of drones becomes increasingly
intricate, researchers have developed a range of
strategies to address the challenges associated with
path planning, including obstacle avoidance, energy
efficiency, and environmental adaptability.



1st International Conference on Drones and Unmanned Systems (DAUS' 2025)
19-21 February 2025 Granada, Spain

One significant area of advancement is the
development of algorithms that optimize path planning
under various constraints. Fan et al. [4] introduce a
path planning method that uses Dubins paths to ensure
smooth turns making sure to avoid restricted areas and
directional constraints, thus improving mission
efficiency for flight plans with long distances.
Similarly, Xiong et al. [5] introduce a hybrid approach
combining Improved Symbiotic Organisms Search
(1SOS) with Sine-Cosine Particle Swarm Optimization
(SCPSO) methods, enhancing the precision and
stability of path planning in three-dimensional
environments. These methods highlight the
importance of adapting path planning algorithms to the
specific operational contexts of drones.

Moreover, the integration of advanced
technologies such as the Internet of Drones (loD) [6]
has been explored to optimize UAV path planning
further. Shirabayashi [7] discusses the implications of
oD on path planning strategies, emphasizing the need
for mathematical models that can accommodate the
complexities introduced by interconnected drone
networks. This integration not only facilitates better
communication among drones but also enhances their
ability to navigate dynamically  changing
environments.

The consideration of environmental factors is also
critical in recent studies. Jones et al. [8] provide a
comprehensive survey on the impact of environmental
complexity on UAV path planning, identifying key
challenges and proposing future research directions.
The survey therein underscores the necessity for path-
planning algorithms that can adapt to real-time
changes in the environment, ensuring safe and efficient
drone operations.

The application of swarm intelligence techniques
has emerged as a promising avenue for enhancing
drone path planning. For example, Wu et al. [9]
propose a swarm-based 4D path planning method
tailored for urban environments,

which addresses the complexities associated with
multiple drones operating simultaneously. This
approach not only improves flight safety but also
optimizes the overall efficiency of drone operations in
densely populated areas.

In addition, energy efficiency remains a pivotal
concern in drone path planning. Diller's [10] research
emphasizes the trade-off between speed and energy
consumption,  advocating  for  path-planning

approaches that account for energy constraints while
maximizing operational speed. This focus on energy-
aware planning is crucial for extending the operational
range of drones, particularly in applications such as
surveillance and agricultural monitoring.

In the same area, Gasteratos and Karydis [1]
proposed a path planning optimization technique
whereby the starting point distances can be reduced
leading to better energy management and operational
efficiency. In their research show that when the launch
pad is relocated, it minimizes the distance that drones
must travel between the launch pad and their first
station, as well as the distance from their last station
back to the launch pad. This reduction directly
translates into lower energy consumption and shorter
flight times, enhancing the overall efficiency of the
operation.

3. Proposed method

The impact of launch pad repositioning as
described by Gasteratos and Karydis in their work [1],
goes beyond improving the initial and final segments
of each drone's route. The Multiple Traveling
Salesman Problem (mTSP) [11, 12] algorithm, which
is designed to minimize the total travel distance across
multiple drones, calculates the optimal routes based on
a predefined starting point, the launch pad, which is
common to all drones. Changing the launch pad to a
new location and running the algorithm again will
generate entirely different route configurations. For
instance, relocating the launch pad closer to a cluster
of sensor stations may lead the algorithm to reassign
some stations to different drones, resulting in shorter
and more efficient routes overall.

This flexibility in route optimization highlights a
critical aspect of the mTSP algorithm: it continuously
seeks to minimize the total travel distance by exploring
alternative route structures. When the launch pad is
repositioned, the algorithm evaluates how the new
location affects the travel distances between the sensor
stations and adjusts the routes accordingly, as shown
in (Fig. 1). This process not only reduces the travel
distance for individual drones, but also balances the
workload among the drones more effectively,
preventing any single drone from being overburdened
with a disproportionately long route. This means that
repositioning the launch pad introduces an opportunity
for the algorithm to explore different route
combinations that may not have been considered
optimal under the previous configuration.



1st International Conference on Drones and Unmanned Systems (DAUS' 2025)
19-21 February 2025 Granada, Spain

2(14929)
M
$10(88,11)
W S7(017138)
5 (599,198)
s 5 (1,170,245)

4 (84253)

59 (489,246)
3 (498317)
1 (842,356)

£

S8 (284,465)

(a) Sensor stations in a field

2(14929)

S7(917,138)
5(599,198)

9 (489,246) £ $6(1,170,245)

d(2.2)=405.1

y(&e@e})

S1(842,356)

(¢) mTSP using a different launch pad

2(149,29) (55934)

T d@srato0
s1o j225

(3.3fp233
d(3/ - 91599,198)
d(233 1444 o
4 (84,253) (48p.246)
2 y-5113F)
8x(aYeB17)
)

(b) mTSP using an arbitrary launch pad

§7.(917,138)

$6(1,170,245)
d T

S1(842,356)

2(149,29)
E

10 (58111)
@ 7(917,138)

6(599,198) A

d3.2)=
S4 (84.253) S(fﬁ%@% 470
iy % S
& .:&ﬁ) d@272638 (33824 i
A SMN842,356) K
T B i
dsy 3
“1@

S8 (284,465)

(d) mTSP using a different launch pad

Fig. 1. Changing the launch pad position.

These findings emphasize that the launch pad's
location is not merely a logistical decision but a critical
variable in the optimization process. Repositioning
allows the algorithm to explore new route
combinations, often resulting in better performance by
minimizing redundant travel distances. This flexibility
underscores the role of adaptive deployment strategies
in enhancing operational efficiency for drone-based
data collection systems. In light of these
considerations, our research endeavors to explore
methodologies for determining the most advantageous
launch pad location for a specified flight plan. As far
as we know, no existing research has addressed this
particular challenge.

3.1. Establishing the ground truth

The methodology developed in this study must be
validated against the ground truth to ensure measurable
and reliable results. The initial step in this process is to
establish the ground truth for the scenarios under
consideration.  This involves identifying a
methodology that consistently identifies the optimal
starting point for the area of interest, while temporarily
disregarding the computational time required to
achieve this outcome. The worst-case scenario in terms
of time complexity is the application of the brute-force
method, which involves evaluating every potential
point in the area to determine the optimal starting
point. Although this method is computationally
expensive, it guarantees the identification of the best
starting point.

For instance, consider a scenario where sensor
stations are distributed across a field, as illustrated in
(Fig. 1a), with dimensions of 1496 units in length and

571 units in width. The brute-force approach would
require running the mTSP algorithm 1496 x 571 =
854,216 times to evaluate each point in the 2D
Euclidean space where the sensor stations are located.
Despite the significant computational expense, this
method is crucial as it ensures the determination of the
optimal starting point, leading to the minimal total
traveled distance when the mTSP is applied.

Using equations (Eg. 2) and (Eq. 3) as defined by
Cheikhrouhou and Khoufi in their work [12], the
optimal starting point can be defined as the one with
the minimum total traveled distance after applying
mTSP in the form of:

OptimalStartingPoint
= min(TotalDistance;) (1)

whereby the Total Distance for x drones in a flight plan
for a particular starting point j is defined as:

X
TotalDistance; = Z D(Routeui)j

i=1

O]

and the Route distance D of a drone U; is defined as the
total distance traveled by the drone, starting from its
initial point H, visiting the assigned ground stations
Siy»Siy» - Si, sequentially in the given order, and then

returning to H.
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3.1. The implementation of GA with mTSP

In this study, we address the challenge of finding
the optimal starting point in a sensor network
distribution, where the computational cost of using
brute-force methods can be prohibitive. The brute-
force approach guarantees the optimal solution by
evaluating every potential starting point, leading to a
time complexity proportional to the number of possible
evaluations (hundreds of thousands). While this
method ensures accuracy, its computational expense
grows significantly with larger problem sizes, making
it inefficient for large-scale applications. Therefore, it
is essential to explore alternative methods that can
provide optimal or near-optimal solutions with
significantly lower computational cost.

A promising approach to solve this problem
efficiently is the use of genetic algorithms (GAs). GAs
are heuristic search methods inspired by natural
selection and the principles of evolution, which have
been successfully applied to a wide variety of
combinatorial optimization problems [13, 14]. The
central advantage of GAs is their ability to explore
large and complex solution spaces without
exhaustively evaluating every possible solution,
making them computationally feasible even for
problems with large numbers of potential solutions
[15].

To implement this approach, we enhanced the
mTSP modeling framework described in [1] and
introduced two additional techniques to identify the
optimal starting point: brute-force and GA-based
methods.  The  brute-force  approach  was
straightforward to implement, as it involved reusing
existing functionality. To implement the GA, we
mapped its key characteristics to the mTSP problem,
detailed next, and utilized the GeneticSharp library
[16], which makes easier the development of
applications using genetic algorithms.

A Genetic Algorithm requires several key features
to function effectively [17]. First, it needs a method to
represent potential solutions to the problem (the
chromosome in GA terms). We implemented
chromosome, in a way that encapsulates all the
necessary information for evaluating a solution, such
as the coordinates X and Y of the starting point.

Second, a mechanism to initialize a population of
these solutions was implemented. This population
serves as the starting point for the evolutionary process

and should ideally cover a diverse range of possibilities
to ensure a broad exploration of the solution space.

Another essential feature is the fitness function
that quantifies the quality of each solution. This
function provides a measurable way to compare
solutions, gquiding the algorithm toward better
outcomes. This was implemented by utilizing the total
distance calculated by mTSP.

The GA also needs a method to select solutions for
reproduction. For this, the elite selection [18] was used
that determines which solutions are more likely to
contribute their "genes" to the next generation,
favoring those with higher fitness. This selection
process helps to preserve the best solutions found so
far and prevents the GA from losing valuable genetic
material during the evolutionary process.

To create new solutions, the algorithm relies on
crossover and mutation operators [19]. Crossover
combines parts of two parent solutions to produce
offspring, facilitating the exchange of beneficial traits.
Uniform crossover was used in this implementation
that utilizes a fixed mixing ratio between two parents.
Similarly, mutation introduces small random changes
to individual solutions, helping the algorithm explore
new areas of the solution space and maintain diversity.
For this, the uniform mutation was used that replaces
the value of the chosen gene with a uniform random
value.

Finally, the algorithm requires a termination
condition to decide when to stop the evolutionary
process. As such, a simple yet effective termination
condition was used to generate initial results that
requires further investigation in future works. That is,
the algorithm stops after an absolute threshold of one
hundred generations.

4. Experimental evaluation
4.1. The Setup

As mentioned in the previous section the mTSP
modeling framework in [1] was enhanced to include
the brute-force and GA-based methods using the .NET
framework with C#. The hardware specifications used
for the tests were as follows: 512 GB of memory, an
AMD® Ryzen Threadripper Pro 5955WX processor
with 16 cores and 32 threads, operating at 4.0 GHz, and
four NVIDIA GA102GL [RTX A5000] graphics
cards.

To facilitate a more straightforward comparison
between brute-force and GA, points outside the
bounding box encompassing all sensor stations were
excluded as these points contribute to increased total
traveled distances rather than reduced.

A total of 80 representative flight plans, each
corresponding to a unique scenario, were developed.
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These scenarios varied in the number of stations,
which were set at 5, 10, 15, 20, 25, 45, 60, or 100, and
incorporated between 1 and 10 drones. Each flight plan
was repeated nine additional times, for a total of 10
iterations per scenario, to account for the stochastic
nature of the random station locations. Consequently,
the study included a total of 80 scenarios x 10 iterations
= 800 tests.

4.2. The Results

A total of 800 tests were conducted, each executed
twice: once using brute-force and once using the GA.
For each test, measurements were recorded for both the
brute-force and GA approaches, specifically focusing
on the total distance traveled and the time required to
identify the optimal starting point.

In order to test the effectiveness and efficiency of
the proposed methodology, this work utilizes the
following two metrics: the Performance degree (Eq. 4)
of the GA approach in relation to the ground truth
provided by the brute-force method, and the TimeRatio
(Eq. 5) of the GA approach in relation to the ground
truth provided by the brute-force method. Accordingly,
TimeRatio values close to 0 indicate the superiority of
the GA approach, values close to 1 indicate the
equivalence of the GA and brute-force approaches,
while values greater than 1 show the superiority of the
brute-force approach over the GA.

Brute Force Distance
) @

P =1—-(1-
erformance ( GA Distance

) ) Genetic Algorithm Time
TimeRatio = - ®)
Brute Force Time

Based on the results obtained, as shown in (Fig. 2)
and (Fig. 3), the GA achieves accuracy comparable to
brute-force  while requiring significantly less
computational time. The X-axis for both graphs shows
how many ground sensor stations are used in each
scenario.

More specifically in (Fig. 2) we see that the total
traveled distance generated when GA is used to predict
a starting point is a near match of that of the brute-force
ranging from 100% to 97%.
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Fig. 2. The extent to which the GA approximated the brute-
force’s results.

Additionally, as shown in (Fig. 3), the
computational cost of the Genetic Algorithm is
significantly lower than that of the brute-force method,
with TimeRatio of GA over brute-force methods being
in the range of [0.00004490, 0.00021891] indicating
thus the clear superiority of the GA approach, as
previously discussed.
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Fig. 3: Time ratio indicating GA’s speed advantage over
brute-force

In a qualitative approach of the evaluation of our
experimentation we have to note that while the brute-
force method guarantees the exact optimal solution, its
computational cost becomes prohibitive for large-scale
problems. In contrast, the Genetic Algorithm:

e Provides a near-optimal solution with
accuracy levels exceeding 97%.

e Drastically reduces computation time,
achieving results up to 4 orders of magnitude
faster than the brute-force.

This balance of accuracy and efficiency makes the GA
an ideal choice for large-scale sensor network
optimization problems, where real-time or near-real-
time decision-making is crucial.

A quick view of the findings is summarized in
Table 1.

Table 1. Summary of Findings

: Genetic Advantage
Metric Brute-Force Algorithm (GA)
Accuracy Exact 0 o Near-
(Distance) solution 97% t0 100% optimal
Computation | Prohibitively Significantly 4 orde_rs of
. : magnitude
Time High lower faster

5. Conclusions

Drone path planning constitutes a critical function

within the domain of UAV operations, facilitating
efficient navigation while simultaneously satisfying
mission-specific objectives. Given the diverse
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applications of UAVSs, path planning exerts a
significant influence on operational efficacy. This is
achieved through the optimization of flight distance,
consequently minimizing resource consumption,
including battery life and operational time.

This study has demonstrated the significant role of
strategic launch pad positioning in enhancing the
efficiency of drone path planning. By utilizing the
mTSP algorithm, we show that repositioning the
launch pad can lead to substantial reductions in
redundant travel distances, ultimately improving
overall mission performance. These findings
underscore the critical importance of adaptive
deployment strategies in the design of energy-aware
drone systems.

Future research will focus on fine-tuning the
internal parameters of the Genetic Algorithm to
enhance its performance. Additionally, exploring
alternative methods for predicting the optimal starting
point will be pursued to further improve the overall
results.

Acknowledgements

Funded by the European Union for the project
REMARKABLE (GA101086387). Views and
opinions expressed are however those of the author(s)
only and do not necessarily reflect those of the
European Union or the European Research Executive
Agency (REA). Neither the European Union nor the
granting authority can be held responsible for them.

References

[1]. G. Gasteratos, I. Karydis, Path planning optimization
for multiple drones: Repositioning the starting point,
IFIP  International  Conference on  Artificial
Intelligence Applications and Innovations, Springer,
2024, pp. 211-223.

[2]. M. M. Quamar, B. Al-Ramadan, et al., Advancements
and applications of drone-integrated geographic
information system technology - a review Remote
Sensing, Vol. 15, Issue 20, 2023.

[3]. R.A.Saeed, M. Omri, et al., Optimal path planning for
drones based on swarm intelligence algorithm Neural
Computing and Applications, Vol. 34, Issue 12, 2022,
pp. 10133-10155.

[4].

[5].

[6].

[7].

(8].

[al.

[10].

[11].

[12].

[13].

[14].

[15].

[16].
[17].

[18].

[19].

X. Fan, A path-planning method for UAV swarm under
multiple environ-mental threats Drones, Vol. 8, 2024,
p. 171.

T. Xiong, H. Li, et al., A hybrid improved symbiotic
organisms search and sine—cosine particle swarm
optimization method for drone 3d path planning
Drones, Vol. 7, Issue 10, 2023.

P. Boccadoro, D. Striccoli, et al., An extensive survey
on the internet of drones Ad Hoc Networks, Vol. 122,
2021, p. 102600

J. V. Shirabayashi, L. B. Ruiz, Toward UAV path
planning problem optimization considering the internet
of drones, IEEE Access, Vol. 11, 2023, pp. 136825—
136854.

M. Jones, S. Djahel, et al., Path-planning for unmanned
aerial vehicles with environment complexity
considerations: a survey, Acm Computing Surveys,
Vol. 55, 2023, pp. 1-39.

Y. Wu, K. Low, et al., Swarm-based 4d path planning
for drone operations, in Urban Environments, IEEE
Transactions on Vehicular Technology, Vol. 70, 2021,
pp. 7464-7479.

J. Diller, Q. Han, Energy-aware drone path finding
with a fixed-trajectory ground vehicle, 2023.

T. Bektas, The multiple traveling salesman problem:
an overview of formulations and solution procedures,
Omega-international Journal of Management Science,
Vol. 34, 2006, pp. 209-219.

O. Cheikhrouhou, I. Khoufi, A comprehensive survey
on the multi-ple travelling salesman problem:
Applications, approaches and taxonomy, Computer
Science Review, Vol. 40, 2021, p. 100369.

S. N. Sivanandam, S. N. Deepa, Introduction to
Genetic Algorithms. Springer, 2008.

A. Lambora, K. Gupta, et al., Genetic algorithm - a
literature review, in 2019 International Conference on
Machine Learning, Big Data, Cloud and Parallel
Computing (COMITCon), Faridabad, India, 2019, pp.
380-384.

S. Katoch, S. S. Chauhan, et al., A review on genetic
algorithm: past, present, and future, Multimedia tools
and applications, Vol. 80, 2021, pp. 8091-8126.

C# genetic algorithm library, https://github.com/giac
omelli/GeneticSharp.

D. Whitley, A genetic algorithm tutorial Statistics and
Computing, Vol. 4, Issue 2, 1994, pp. 65-85.

T. Back, Selective pressure in evolutionary algorithms:
a characterization of selection mechanisms, in
Proceedings of the First IEEE Conference on
Evolutionary Computation. IEEE World Congress on
Computational Intelligence, Orlando (FL), USA, Vol.
1, 1994, pp. 57-62.

A. E. Eiben, J. E. Smith, Introduction to Evolutionary
Computing. Springer, 2015.



